Contact and friction of thin hydogels films: the role of poroelasticity

J. Delavoipière, Y. Tran, E. Verneuil and A. Chateauminois

Soft Matter Sciences and Engineering Laboratory ESPCI, France

C.-Y. Hui

Mechanical and Aerospace Engineering Cornell University, USA

Functionalization of glass substrates by hydrophilic coatings

Ex: prevention of mist formation

→ Tribological performance : friction, scratch resistance ?

Thin hydrogels layers mechanically confined within contacts between rigid substrates

Role of poroelasticity on mechanical and frictional properties?

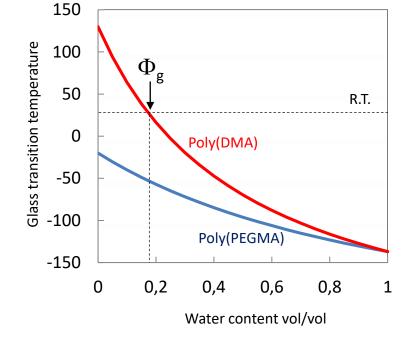
Model gel networks

Poly(PEGMA)

$$H_3C$$
 O CH_2 CH_3 CH_3

poly(ethylene glycol) methyl ether methacrylate PEGMA (n = 4/5)

Poly(DMA)



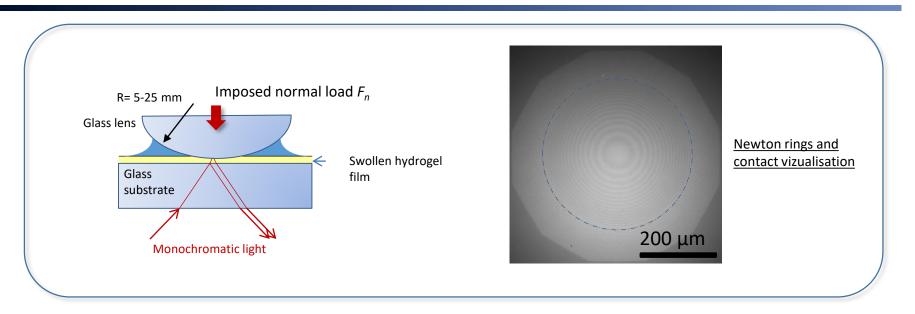
N,N-dimethylacrylamide

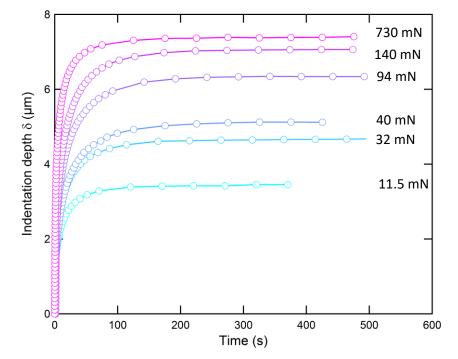
Tiol-ene chemistry route → homogeneous thin films:

Li et al, Langmuir, 2015 Chollet et al, ACS Appl. Mat. Interfaces , 2016

- ✓ grafted to glass or silicon wafer substrates
- controlled thickness from 250 nm (± 5%) to 2 μm (± 10%)
- ✓ controlled cross-linking (swelling ratio from 2.5 to 4)

Normal indentation response



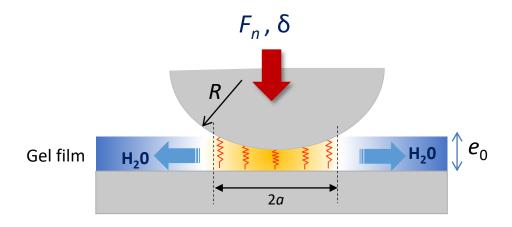


Time-dependent indentation depth

Poly(PEGMA) e_0 =9 µm R=5.2 mm

Approximate poroelastic contact model

Within the limits of confined contact geometries $\alpha >> e_0$

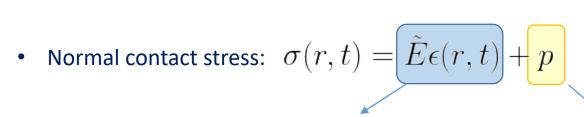


- No expansion of film deformation outside the contact
- Rigid substrates

$$\text{Compressive strain} \quad \epsilon(r,t) = \frac{e_0 - e(t))}{e_0} = \frac{\delta(t) - r^2/2R}{e_0}$$

Indentation kinetics

Mixture theory developed by Biot (1955)



Elasticity of the polymer network

Pore pressure

$$\tilde{E}=rac{2G\left(1-
u
ight)}{1-2
u}$$
 Uniaxial compression modulus

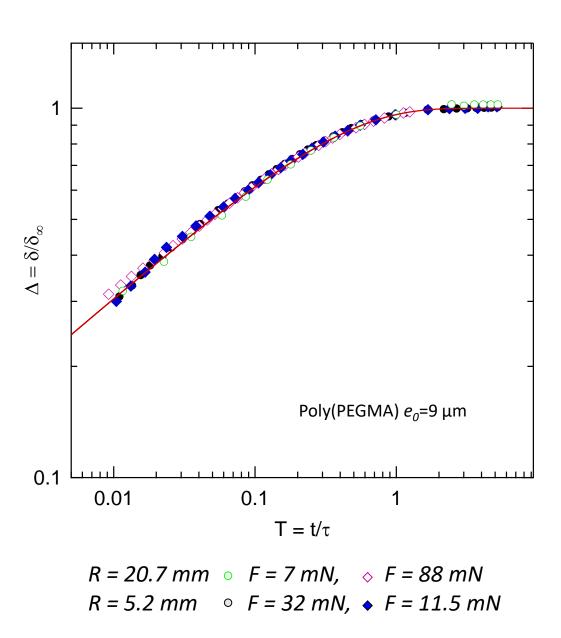
- Water transport driven by Darcy's law: $J_r = -\kappa \frac{dp}{dr}$ $\kappa = \frac{D_p}{\eta}$
- Volume conservation

$$\frac{t}{\tau} = -\frac{\delta}{\delta_{\infty}} + \frac{1}{2}log\left(\frac{1 + \delta/\delta_{\infty}}{1 - \delta/\delta_{\infty}}\right)$$

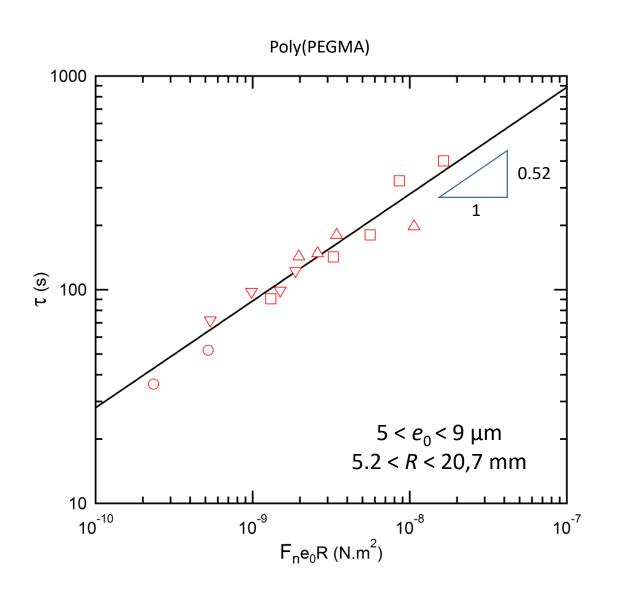
$$\delta_{\infty} = \left[\frac{F_n e_0}{\pi R \tilde{E}}\right]^{1/2} \qquad \qquad \tau = \frac{1}{2\sqrt{\pi}} \frac{\eta}{D_p} \left(\frac{F e_0 R}{\tilde{E}^3}\right)^{1/2}$$

Equlibrium indentation depth

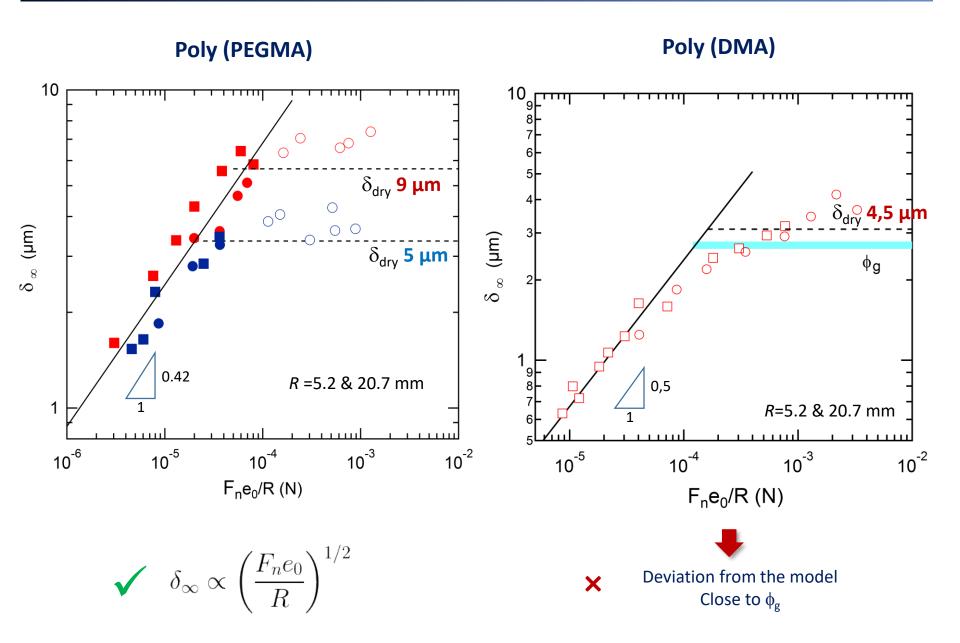
Poroelastic time



model

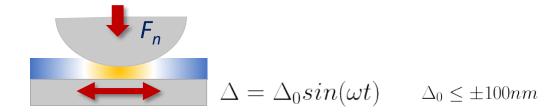


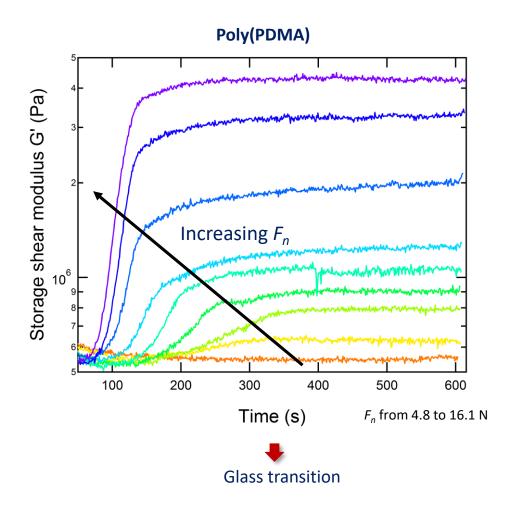
$$\checkmark \tau \propto (F_n e_0 R)^{1/2}$$

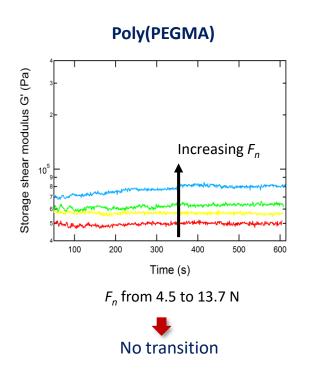


Glass transition induced by poroelastic drainage

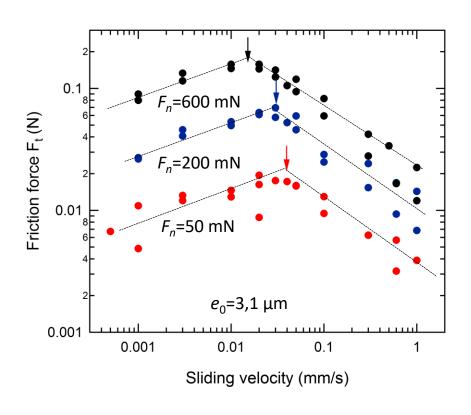
• Lateral contact experiments → shear modulus measurements during the course of indentation drainage



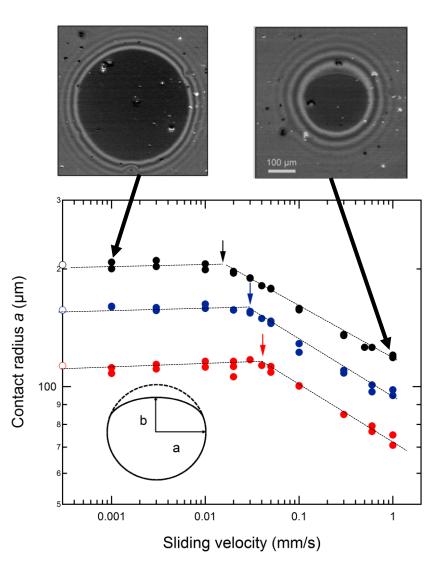




Friction force



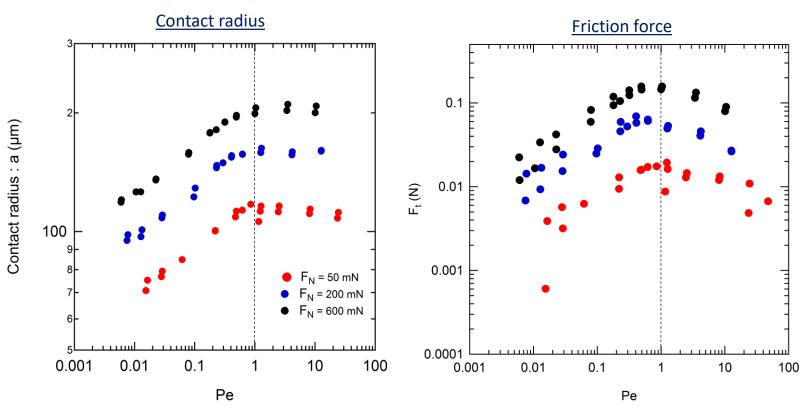
Contact shape



Velocity-dependence: two regimes → poroelastic effect ?

Contribution of poroelasticity: Peclet number

Peclet Number
$$Pe = \frac{2a}{v\tau}$$
 = Contact time Poroelastic time



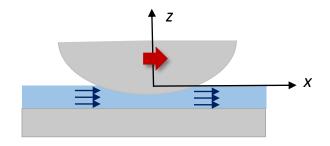
τ determined independently from indentation experiments

Pe > 1 : drainage equilibrium ~ normal indentation

Pe < 1: out-of equilibrium state \rightarrow incomplete drainage

Pore pressure distribution

Extension of the poroelastic contact model to steady-state sliding



Moving coordinate system

$$\left. \frac{\partial}{\partial t} \right|_{X,y} \to -v \frac{\partial}{\partial x}$$

Pore pressure field induced during lateral motion

$$\boxed{-v\frac{\partial \epsilon}{dx} = -\kappa \nabla^2 p}$$

Darcy's Law

General solution for pore pressure:

$$p = -\frac{v}{8Re_0\kappa}r^3\cos\theta + \sum_{n=0}^{\infty} a_n r^n\cos n\theta$$

With p=0 on the contact line to be determined

Contact stress: velocity dependence

Hyp: we enforce that contact line is a circle with $p(a_0)=0$

-1.0

y/a₀

1.0

0.5

0.0

-1.5

-1.0

-0.5

0.0

 x/a_0

0.5

1.0

ь

$$\sigma(r,t) = \tilde{E}\epsilon(r,t) + p$$

$$\sigma\left(r,\theta\right) = \frac{\tilde{E}}{2Re_0}\left(a_0^2 - r^2\right)\left[1 + \frac{v}{4\tilde{E}\kappa}rcos\theta\right]$$

$$v < v_c$$

$$v_c = \frac{4\tilde{E}\kappa}{a_0}$$

$$Pe = 1$$

$$Critical velocity v_c$$

-0.5

-1.5

-1.0

0.0

x/a₀

0.5

1.0

1.5

Above v_c : negative contact stress \rightarrow contact line shrinks non-uniformly Reduction in contact size \rightarrow build-up of pore pressure at increasing velocities

Contact size reduction for Pe < 1

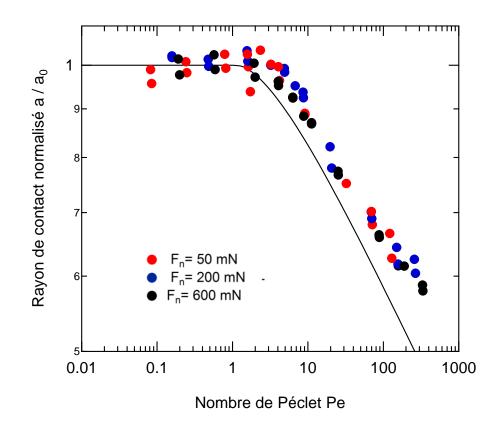
Numerical solution of the poroelastic contact model

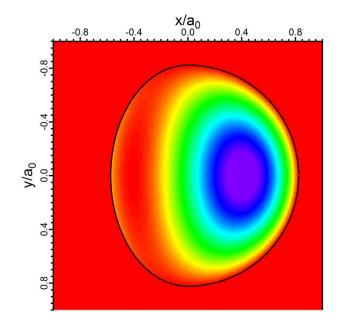
$$\sigma(r,\theta) > 0$$

Contact line $a(\theta, v)$ ensuring:

$$p(r = a(\theta, v)) = 0$$

$$\int_{A} \sigma(r,\theta) = F_n$$





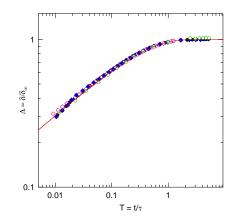
Calculated contact shape and normal contact stress

Pe=0.1

Conclusions & perspectives

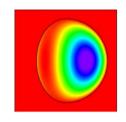
- Indentation of thin hydrogels films confined within glass substrates
 - ✓ Approximate poroelastic contact model
 - ightarrow Scaling laws for δ_{∞} and τ as a function of gel mechanical and diffusive properties contact geometry & loading conditions
 - ✓ Glass transition induced by drainage

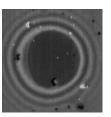
- Frictional properties driven by poroelastic time
 - ✓ Two frictional regimes Pe > 1 equilibrium drainage state



-Pe < 1 pressure imbalance resulting in contact asymmetry and size reduction

→ Contact changes accounted for by poroelasticity





Contribution to friction force of viscous dissipation associated to poroelastic flow?

Friction force across glass transition?