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We have recently proposed an efficient computation method for the frictionless
linear elastic axisymmetric contact of coated bodies. Here we give a brief
description of the approach. We also discuss implications of the results for the
instrumented indentation data analysis of coated materials. Emphasis is laid
on incompressible or nearly incompressible materials (Poisson ratio u > 0:4):
we show that the contact stiffness rises much more steeply with contact radius
than for more compressible materials and significant elastic pile-up is evidenced.
In addition, the dependence of the penetration upon contact radius increasingly
deviates from the homogeneous reference case when the Poisson ratio increases.
As a result, this algorithm may be helpful in instrumented indentation data
analysis on soft and nearly incompressible layers.

1. Introduction

Understanding the elastic contact to a coated substrate is a prerequisite to the
analysis of more complex thin film behaviour. It is also an interesting problem
because of two difficulties:

(1) the coupling by the elastic field of planar parallel interfaces, which determines
the response function;

(2) the mixed boundary conditions usually involved in contact problems.

The problem has been discussed in numerous publications, for example [1–5]. In
a recent contribution, we have proposed a numerically efficient approach [6]. We first
summarize this technique, insisting on the structure of the elastic response function
on the one hand, and on the treatment of the mixed boundary conditions on the
other.

We also apply the resulting algorithm to the specific case of nearly incompressible
or incompressible layer material. Compared to compressible layer material, the
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stiffness increases much more rapidly. At the same time, the dependance of the
penetration upon contact radius is also strongly affected. More generally, the devia-
tion of the penetration vs. contact radius relation from the homogeneous substrate
solution could limit the direct applicability of an Oliver–Pharr approach to
instrumented nanoindentation data treatment for coated substrates.

2. Contact to a coated substrate

The present method is based on the elastic response function of a coated substrate
calculated by Li and Chou [7]. The expression of the response function is complex
but is characteristic of coupled planar parallel interfaces. We will first highlight these
main features.

2.1. Response functions of coupled interfaces

The coupling of parallel planar interfaces through the layer of material 1 (thickness t)
is schematized in figure 1. In-plane symmetry suggests a Fourier transform in the x , y
plane (wavevector k). If the fields obey an equation of the Laplacian type, then the
response function D obeys, in the notation of figure 1,

w2
0 �

d2

dz2

 !n

Dðk, zÞ ¼ 0 for z < �t ð1Þ

w2
1 �

d2

dz2

 !n

Dðk, zÞ ¼ AðkÞ�ðz� z0Þ for � t < z < 0 ð2Þ

w2
2 �

d2

dz2

 !n

Dðk, zÞ ¼ 0 for 0 < z ð3Þ

with adequate boundary conditions on the interfaces and at z ¼ �1. A(k) is an
excitation located on the plane z ¼ z0. For a harmonic field n¼ 1, and n¼ 2 for
a biharmonic field. This general structure will be specified below along with the
parameters wi.

2.1.1. Electromagnetic coupling between planar interfaces. The interaction of
the electromagnetic field radiated by polarizable bodies at close distance results in

0 1 2

Z
t

Figure 1. Geometry of the coupling between parallel planar interfaces. The layer
thickness is t.
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the van der Waals interaction. Assuming that two such media with dielectric
constants �i and parallel interfaces are separated by a distance t, the field
fluctuations [8] with wavevector k in the x , y plane and angular velocity !n obey
equations (1)–(3) with

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i!

2
n þ k2

q
: ð4Þ

The response function can be calculated. For example, the response at z¼ 0 to an
excitation with wavevector k located at z¼ 0 (local response) is

Dð0, 0Þ ¼ �
2p
w1

1

D
ð5Þ

with

D ¼ 1� expð�2w1tÞ�01�12 ð6Þ

and

�ij ¼
wi � wj

wi þ wj

: ð7Þ

This form of the response function is characteristic of coupled parallel interfaces.
Indeed, the denominator D is the determinant resulting from the solution of the
linear system equations (1)–(3). It couples the exponential field propagation factor
in medium 1 (i.e. expð�2w1tÞ) with the polarizability mismatch coefficients �ij. These
antisymmetric mismatch coefficients result from the boundary conditions at the
interfaces, and appear quite generally in interfacial problems such as the electrostatic
image potential, Fresnel reflection coefficients or Dundurs elastic mismatch
parameters.

The response function D can be used to calculate van der Waals interactions.
Indeed, the secular equation D ¼ 0 determines the coupled surface plasmons eigen-
frequency from which the variation of the energy of the system with the distance t
can be calculated.

2.1.2. Response function of a coated substrate. Similarly for our contact problem,
we assume a coated elastic half-space under an axisymmetric frictionless loading
(figure 2). The layer, of thickness t, and the half-space are elastic, isotropic and

E*
1,1ν1

E*
0 ,ν0

t

P

h(r)

z

r
u(r)

δ2a

Figure 2. Schematic representation of the indentation of a coated elastic half-space.
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homogeneous, while their adhesion is supposed to be perfect. Let E0 and �0 (resp.

E1 and �1) be the elastic modulus and the Poisson ratio of the half-space (resp. of

the layer).
Due to axisymmetry, we use f the 0th-order Hankel transform of f defined as:

fðkÞ ¼

Z
0

1

dr r J0ðkrÞ fðrÞ

instead of the Fourier transform. Here, J0ðxÞ is the 0th-order Bessel function of the
first kind which displays a cosine-like oscillatory behaviour suitable for the present

geometry.
Then, for a coated substrate, we fall under the framework of equations (1)–(3) for

linear elasticity. As is usual in 2-D elasticity problems, the fields obey a bi-Laplacian

equation so that n¼ 2. We consider a static problem so that wi¼ k. Under these

hypotheses, Li and Chou obtained a relation [7] between the applied normal surface

stress qðkÞ (taken positive when compressive) and the displacement uzðk, zÞ (positive

is inwards).
More specifically for z¼ 0 (with uzðk, 0Þ � uðkÞ):

kuðkÞ ¼ CðktÞqðkÞ ð8Þ

where the response function is:

CðktÞ ¼
2

E�
1

1þ 4b kt e�2kt
� ab e�4kt

1� ðaþ bþ 4bðktÞ2Þe�2kt þ ab e�4kt
ð9Þ

a ¼
��0 � �1
1þ ��0

, b ¼
�� 1

�þ �1
, � ¼

E1ð1þ �0Þ

E0ð1þ �1Þ
, �1 ¼ 3� 4�1 and �0 ¼ 3� 4�0

E�
1 being the reduced modulus of the layer defined as E1=ð1� �1

2
Þ.

The structure of the response function is again characterized by the exponential

field propagation factors and antisymmetric elastic mismatch factors for the field

transmission at the interfaces. However, compared to electromagnetic response, the

form is complexified by the bi-Laplacian-type field and the shear-free boundary

conditions at the surface.

2.2. Boundary conditions

Contact problems such as indentation are characterized by mixed boundary condi-

tions (figure 2): the normal surface displacement u is specified in the contact zone –

by the penetration and shape of the indenter – while the normal applied stress q

is given outside, usually zero. Now equation (8) can only be used to calculate the

surface displacement everywhere on the surface provided the normal surface stress is

known everywhere on the surface. The response function equation (9) is therefore

useless as such [7]. However, this problem can be circumvented by a mathematical
trick (or change of basis, or use of auxiliary functions).

The method, which appears explicitly in the later papers by Sneddon [4, 9], has

proved fruitful for the description of complex contacts. For example, we have been

5362 E. Barthel et al.
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able to propose an exact solution to the long standing question of the adhesive

contact of viscoelastic spheres in this way [10].
Algebraically, the method relies on the relation

J0ðkrÞ ¼

Z r

0

cosðktÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p ð10Þ

that is to say the Bessel function J0 is the cosine transform of the function

Yðr� tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p ð11Þ

where Y, the Heaviside step function, anticipates our mixed boundary conditions.
The trick can also be viewed as transforming back by a cosine transform the

variables which were transformed forward with a Hankel transform. We do not

fall back in proper real space, but in a space where our boundary conditions assume

a suitable form, due to equation (10).
Explicitly, we introduce the auxiliary fields g and � defined as [10]:

gðsÞ ¼

Z
0

1

dk qðkÞ cosðksÞ ð12Þ

�ðsÞ ¼

Z
0

1

dk kuðkÞ cosðksÞ: ð13Þ

Let us now apply the cosine transform to equation (8). Then:

�ðsÞ ¼
2

p

Z
0

1

gðrÞ

Z
0

1

dkCðktÞ cosðkrÞ cosðksÞ

� �
dr: ð14Þ

Similarly, equation (12) becomes

gðtÞ ¼

Z þ1

t

sqðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2

p : ð15Þ

As a result of the boundary condition qðsÞ ¼ 0 for s> a, gðtÞ ¼ 0 for t> a where
a is the contact radius. Then the upper bound in the spatial integral equation (14) is

actually a, not infinity. The equilibrium equation (14) now has the form

�ðsÞ ¼
2

p

Z a

0

gðrÞKðr, sÞdr ð16Þ

and a simple algorithm can then be devised.
Indeed, the function � is known inside the contact zone for an arbitrary indenter

shape h(r): from equations (10) and (13) one obtains (s<a)

�ðsÞ ¼
d

ds

Z
0

s

dr
rhðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2

p : ð17Þ

Elastic contact to nearly incompressible coatings 5363
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This can be calculated analytically for most simple indenter shapes. In addition, the
kernel K in equation (16), as defined by equations (14), can be calculated from
the response function C(kt) by fast Fourier transform (FFT).

Thus, discretizing equations (14), g(s) for s<a can be calculated numerically
as the solution to a linear system. From g(s), s<a, force, penetration and contact
stiffness can be computed [6].

Some of the results obtained with this algorithm have been presented earlier.
In this paper, we want to insist on a specific case: when the layer is incompressible
or nearly incompressible.

3. Incompressible and nearly incompressible coatings – effective contact stiffness

In our previous paper [6], we calculated the contact force P, the contact stiffness S
and the penetration � as a function of contact radius a for a large range of modulus
mismatch and a single value of Poisson ratio �¼ 0.25 for both substrate and film.
These results provided a detailed description of the transition between the film
dominated regime and the substrate dominated regime.

It is well known, however, that confinement of the layer at large contact
radius values a=t � 1 will result in specific phenomena for nearly incompressible
materials [11]. Indeed, for such materials, volumetric deformations are penalized
so that shear deformations predominate. In the present case, such deformations
are hampered by the confinement. The response is therefore dependent upon the
axial compression modulus in the absence of lateral strain, the so-called
œdometric modulus of the layer [12]:

Eo ¼
Eð1� �Þ

ð1� 2�Þð1þ �Þ
: ð18Þ

Particularly relevant is the case of a compliant layer deposited on a more rigid
substrate. This could be a polymer film on a glass substrate for example. Using our
previous normalization scheme [6], we have calculated the response of the elastic
frictionless contact of a sphere on a coated substrate for a film/substrate reduced
modulus mismatch equal to 0.1. The numerics were carried out with the Igor data
treatment software (Wavemetrics) on a standard 1.60 GHz processor. To probe the
relevant part of the response function, a variable cut-off depth B ¼ 3000a=t was used.
The other parameters for the numerics are N1 ¼ 220 points for the cosine transform
and the contact radius a was discretized over N2¼ 500 points. The resulting compu-
tation time for a given contact radius is of the order of 1 second. The results at large
Poisson ratios were checked by increasing the computation parameters N1 and N2

without significant variations in the results.
Figure 3 displays the normalized contact stiffness, or effective reduced modulus,

as a function of the normalized contact radius for Poisson ratios comprised between
0.1 and 0.5. The usual transition between film modulus (0.1) and substrate modulus,
which is the normalizing parameter, i.e. 1, is readily obtained. The results are almost
insensitive to the Poisson ratio � for � < 0:25. Sizeable deviation is recorded for
0:4 < � < 0:5. In this range, we observe that the transition occurs earlier and is

5364 E. Barthel et al.
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increasingly steep as the layer becomes less compressible. However, the system does
finally reach the bare substrate reduced modulus.

For incompressible coating materials, this earlier saturation of the reduced mod-
ulus is essentially due to the elastic compliance of the substrate itself and is better
evidenced from the surface and interface normal displacements. These displacements
as computed by inverse Hankel transform from the discrete g functions obtained
at various a / t ratios are displayed in figure 4. At low penetrations (a=t ¼ 0:1),
the substrate remains undeformed and the compressible and incompressible systems
are undistinguishable. At larger contact radii (a=t ¼ 1), the substrate starts to deform
and the coating material is increasingly confined. For the incompressible material,
an elastic pile-up of the coating material forms around the contact zone, while
a global elastic sink-in results from the deformation of the substrate and increases
with increasing contact radius. Generally speaking, these results illustrate the
impact of the incompressibility on the partitioning of the elastic displacements
between substrate and coating. Most noteworthy, at contact radius a=t ¼ 8, for
an incompressible layer, the surface displacement is almost completely due to
substrate deformation; yet a roughly equal contribution from layer and
substrate is calculated for a compressible coating material under the same conditions
of confinement.

4. Surface deflexion and instrumented indentation data analysis

With instrumented indentation, in the absence of direct measurement of the contact
area, the Oliver–Pharr method is used to infer the contact radius from measured
variables, i.e. force, penetration and contact stiffness [13]. One usually uses

hc ¼ �� "
P

S
ð19Þ

1.0
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0.0

E
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iv

e 
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ν = 0.5
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ν = 0.4

ν = 0.3

ν = 0.2

ν = 0.1

Figure 3. Effective reduced modulus S=2a as a function of normalized contact radius a / t
for a layer/substrate reduced modulus mismatch of 0.1 (E?

substrate ¼ 1, E?
film ¼ 0:1) and different

layer Poisson ratios. The substrate Poisson ration is 0.2.
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where S is the contact stiffness, P the force, � the penetration and hc the contact
depth. The form of the equation and the value of the constant " are such that

equation (19) is exact for a purely elastic system. It has been experimentally demon-

strated that equation (19) is also very useful for elasto-plastic materials, mostly when

plastic pile-up is minimal.
For the analysis of instrumented indentation on coated substrates, the same

equation is used. However, equation (19) is no longer valid. Similarly, the usual

relation between penetration and contact radius such as

� ¼
p
2

a

tan�
ð20Þ

for a cone of half-included angle � breaks down. It is replaced by a more complex
relation which involves the mechanical parameters of the system. This makes explicit

the fact that equation (20) is a mechanical relation even though the mechanical

parameters have accidentally dropped out for a homogeneous substrate. For coated

substrates, some examples are plotted in figure 5. A salient feature is that small

0

1

N
or

m
al

iz
ed

 N
or

m
al

 D
is

pl
ac

em
en

ts
 u

/(
a2 /

R
)

−4 −3 −2 −1 0 1 2 3 4

Normalized radius r/a

ν=0.2 ν=0.5
a/t=0.1

a/t=1

a/t=2

a/t=4

a/t=8

interface
surface

Figure 4. Computed normal displacement u of surface (plain) and interface (dashed) for the
contact of a sphere to a coated substrate (E?

substrate=E
?
film ¼ 10). Radii are normalized to contact

radius a, displacements to a2=R. The coating Poisson ratio is �¼ 0.2 on the left, 0.5 on the
right. Calculation parameters as in figure 3. The curves are offset by unit increments for
clarity.
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contact radii are more easily reached (i.e. with smaller penetrations) for incompres-
sible layers than compressible layers. This is due to the elastic pile-up effect.
However, for a=t ’ 4:5 a cross-over takes place. Larger radii are achieved by larger
penetrations for incompressible layers because of the increased effective stiffness.

If we keep the form of equations (19) for coated substrates, we may attempt a
more accurate approach by calculating the value of " for a given coating configura-
tion. Some results are displayed in figure 6. Note that in the transition region, " drops
to significantly lower values and that again the approach to incompressibility results
in considerable variations. Values for " as low as 0.2 may affect the data treatment
in cases where the elastic contribution is significant (large S, i.e. sizeable elastic
recovery). Due to the ease of calculation involved here, adequate " values are readily
calculated self-consistently during actual data treatment.
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Sphere

Figure 5. Computed penetration as a function of normalized contact radius for a sphere
on a coated substrate (E?

substrate=E
?
film ¼ 10, �substrate ¼ 0:2) for various film Poisson ratio.

The penetration is normalized to a2=R.
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Figure 6. Computed values for the ‘constant’ � in equation (19) as a function of normalized
contact radius and film Poisson ratio. Same parameters as in figure 5.
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Finally, it is important to observe that failure to reach a correct evaluation of the
contact radius is a double source of errors. A direct error occurs in the evaluation
of the effective reduced modulus E� through

E�
¼

ffiffiffi
p

p
S

2�
ffiffiffiffi
A

p ð21Þ

where � is the non-axisymmetry correction factor and A the contact area. A second
error affects the evaluation of the layer reduced modulus from the effective reduced
modulus because the model for the latter, such as discussed in section 3, will be
evaluated at an incorrect value of the contact radius. In the case of compliant
films, these errors add up. An evaluation for �¼ 0.2 and a modulus mismatch of
100 results in an error of up to 60% at a=t ’ 3.

5. Conclusion

Summarizing our approach to the elastic contact of coated substrates [6], we have
shown that the form of the response function calculated by Li and Chou [7] is
characteristic of the coupling of parallel planar interfaces through the elastic field.
Using a new basis of functions well suited to the mixed boundary conditions, we
obtain an integral relation that is easily solved numerically and provides force,
penetration and contact stiffness as a function of the contact radius, for arbitrary
moduli ratios and arbitrary axisymmetric indenter shape.

The stiffness of incompressible layers increases much more steeply with contact
radius than more compressible coatings as soon as the layer is confined in the con-
tact. Indeed, volumetric deformation is strongly penalized while significant shear is
prevented by the confined geometry.

This is accompanied by sizeable elastic pile-up which significantly reduce the
penetration needed to reach a given contact radius. For large contact radii, the
stiffness of the layer dominates and the surface deformation is almost completely
due to the elastic yielding of the substrate. Again, this phenomenon occurs at lower
contact radii for nearly incompressible layers because of the enhanced stiffness.

The deviation from the homogeneous material penetration vs. contact radius
relation presumably bears upon the validity of the Oliver and Pharr approach to
instrumented indentation. A possible improvement for soft and quite elastic layers
could be obtained by calculating more accurate values of � with the present method.
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