Normal contact and friction of rubber with model randomly rough surfaces

S. Yashima ¹⁻², C. Fretigny ¹ and <u>A. Chateauminois</u> ¹ 1. Soft Matter Science and Engineering Laboratory - SIMM Ecole Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France

2. Laboratory of Soft and Wet Matter, Hokkaïdo University, Japan

V. Romero, A.Prevost & E. Wandersman Jean Perrin Laboratory (LJP), Université P. et M. Curie, Paris, France

M.K. Chaudhury Department of Chemical Engineering, Lehigh University, Bethlehem, USA

Friction between macroscopic bodies: a longstanding problem....

• Non adhesive single asperity elastic contacts Hertz (1881)

• Adhesive contact between smooth surfaces JKR & DMT (1971)

Contact between nominally flat surfaces

Greenwood & Williamson (1966)

Real contact area $\,A \propto P\,$

→ Justification of Amontons-Coulomb's friction law
→ Extensions to more complex geometries
Archard (1957), Ciavarella (2008)...

• Rough contact models based on a spectral description of surface topography

Persson (2001), Robbins (2007), Müser (2008)...

 \rightarrow Extensions to friction and adhesive contacts

Transparent randomly rough surfaces consisting in distributions of spherical asperities (${\sim}50~\mu\text{m})$ GW type surfaces

Imaging of micro-contacts distributions

+ Statistical distributions of micro-contacts pressure and size

Role of elastic coupling between asperities ?

GW model

Patterned surfaces and associated sphere-on-plane contacts / I

• Soft Asperities (SA) surfaces

Surface density: $\phi = 0.1$ and 0.4

Replication of a micro-machined PMMA template

• Lateral and height distributions of spherical asperities perfectly controlled by design

 \rightarrow Uniform random height distribution (*R*=100 µm, 30 µm < height <60 µm)

• Small scale roughness on the micro-asperities \rightarrow normal contact experiments only

Patterned surfaces and associated sphere-on-plane contacts /II

• Rigid Asperities (RA) surfaces

Surface density: ϕ =0.41

- Gaussian distribution of asperity sizes and heights (a posteriori characterization)
- Smooth micro-asperities \rightarrow normal contact and friction experiments

Water droplet condensation method....

Fabrication of rigid asperities patterns by droplet condensation method

• 2. PDMS replica

Shape of the asperities controlled by the contact angle

Contact devices

Contact imaging of micro-asperities contacts

✓ Contact radii & spatial distributions of micro-contacts (RA & SA surfaces)

✓ Contact pressure distribution (RA surfaces only)

Hertz law assumed to be obeyed locally

 $P_i = \frac{16a_i^3}{9R_i}$

Power law dependence $A \propto P^n$

RA surface $n=0.81 \pm 0.01$ **SA surface** $n=0.94 \pm 0.01$ independent of surface density of micro-asperities

A(P) relationship: role of elastic interactions ?

Indentation depth of the ith micro-asperity contact:

 \rightarrow With elastic interactions

$$\left[\alpha_{ij}\right] = -\frac{4\sqrt{R_j}}{3\pi}\frac{1}{r_{ij}}, \quad i \neq j,$$

 \rightarrow Without elastic interactions

$$\left[\alpha_{ij}\right] = 0$$

Calculated load dependence of the real contact area

• Lens curvature effect

Gap between the nominal \sim micro-asperity size \rightarrow

$$\zeta \propto P^{-1/9} R_l^{5/9}$$

$$A \propto P^n$$
 RA surface $R_l = 13 \text{ mm}$ $n = 0.81$
SA surface $R_l = 128 \text{ mm}$ $n = 0.94$

• SA Surface

P=0.02 N

P=0.2 N

P=0.5 N

Predictions from Ciavarella's model

$$\mathbf{o} [\alpha_{ij}] \neq 0$$
$$\mathbf{o} [\alpha_{ij}] = 0$$

- Experimentally : summation of the local micro-contacts forces p_i within r and r+dr (averaging over more than 20 realizations of the SA contacts)
- Theoretically:
 - \rightarrow Ciavarella's model
 - → Extension of the GW model to the contact of rough spheres Greenwood and Tripp (1967)

- No short range elastic interaction between neighboring micro-asperities
- Long range elastic coupling coming from the curvature of the nominal surfaces

Contact pressure profiles p(r)

- Added tail to the Hertzian pressure distribution $~\zeta \propto R^{5/9} \sigma^{2/3} \sim \sqrt{R\sigma}$

No significant difference between Ciavarella's and GT model

Short range elastic interactions does not affect the radial pressure distribution What about the distribution of quantities from which p(r) derives?

GW model obeyed over most of the contact pressure range

Frictional properties of RA surfaces

Interface shear stress cannot simply be transposed at all length scales

• Normal contact of model randomly rough surfaces reminiscent to GW model

 \rightarrow Long range elastic interactions coming from the curved profile of the indenter \rightarrow Short range interactions between neighboring micro-contacts negligible

Experimental validation of the GW Williamson model

Extension to more realistic surface roughness including fractal surfaces ??

 \rightarrow Experiments with hierarchical surface roughness

• Preliminary **friction** results show that frictional stress measured at macroscopic length scales cannot simply be transposed to multi-contact interfaces

 \rightarrow Dependence of rubber friction on surface stretching ??