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Abstract This paper reports on the frictional properties of

smooth rubber substrates sliding against rigid surfaces cov-

ered with various densities of colloidal nano-particles

(average diameter 77 nm). Friction experiments were car-

ried out using a transparent poly(dimethyl siloxane) (PDMS)

rubber contacting a silica lens with silica nano-particles

sintered onto its surface. Using a previously described

methodology (Nguyen et al., J Adhesion 87:235–250, 2011),

surface shear stress and contact-pressure distribution within

the contact were determined from a measurement of the

displacement field at the surface of the PDMS elastomer.

Addition of silica nano-particles results in a strong, pressure-

independent enhancement of the frictional shear stress as

compared to the smooth lens. The contribution of visco-

elastic losses to these increased frictional properties is ana-

lyzed in the light of a numerical model that solves the contact

problem between the rubber and the rough surface. An order-

of-magnitude agreement is obtained between experimental

and theoretical results, the latter showing that the calculation

of viscoelastic dissipation within the contact is very sensitive

to the details of the topography of the rigid asperities.

Keywords Friction � Rubber � Patterned surface �
Viscoelastic dissipation

1 Introduction

Rubber friction is a topic of huge practical importance in

many applications, such as tires, rubber seals, conveyor

belts, and syringes, to mention only a few. As a conse-

quence, frictional properties of soft elastomers have moti-

vated several investigations for over half a century (for an

historical perspective, the reader is referred to the paper by

Sills et al. [1]). The velocity and temperature dependence

of the frictional properties of commercial rubbers was first

explored in early studies by mechanical engineers (see e.g.,

[2–4]). In a seminal work by Schallamach [5], this

dependence was accounted for by thermally and stress-

activated pinning/depinning mechanisms between rubber

molecules and the contacting surface. While Schallamach

focused on molecular processes at the frictional interface,

other studies [6, 7] pointed out that a fraction of the energy

dissipated during sliding motion is also due to viscoelastic

losses resulting from the deformation of the soft rubber in

the contact zone. These processes were first evidenced by

Greenwood and Tabor [7] in a series of experiments, in

which hard spheres and cones were sliding or rolling on

well-lubricated rubber surfaces. The selected lubrication

conditions ensured that the thickness of the thin lubrication

film was larger than the amplitude of surface roughness.

Under such conditions, most of the friction force is

assumed to arise from deformational losses within the

rubber. These experimental results were analyzed using a

simple model based on an empirical estimate of the frac-

tion of the input elastic energy that is lost by hysteresis.

This model was recently refined by Persson [8], using an
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approach in which the hysteretic losses are explicitly taken

into account from the relaxation spectrum of the visco-

elastic substrate.

Early experimental studies with single asperity contact

were subsequently extended to the more complex situation

of rubber sliding on microscopically rough surfaces. In a

seminal work [9, 10], Grosch examined the velocity and

temperature dependence of the friction of filled rubbers

against hard surfaces. In the case of rough tracks, a max-

imum in friction was found to occur at a sliding velocity

related to the frequency with which the asperities of the

rough surface deform the rubber surface. This maximum

was absent on a smooth track, thus reflecting the defor-

mation losses induced by the passage of the asperities over

the rubber surface. From a theoretical point of view, Fou-

rier methods of analysis can be employed to develop linear

viscoelastic stress and displacement solutions for use in

rough contact problems. Using such approaches, exact

solutions for the deformation component of friction have

been derived, as an example, for periodic arrays of iden-

tical asperities sliding against a power law viscoelastic

materials [11] or in the limiting case of a perfectly con-

forming contact between a rubber substrate and a stochastic

surface [12]. A more general contact-mechanics model for

randomly rough surfaces was recently developed by Pers-

son [13, 14]. Using a spectral description of the topography

of the rough surfaces, this theory predicts how the com-

ponent of friction force associated with hysteretic losses

varies with velocity and contact pressure from an estimate

of the actual contact area. Some experimental results tend

to support this theory [15], but a detailed examination of

the effects of surface topography on rubber friction remains

very challenging in the case of randomly rough surfaces,

whose characteristic length scales usually range over sev-

eral order of magnitudes.

In this study, we take advantage of a technique devel-

oped by Huwiler et al. [16] and Kunzler et al. [17], which

involves the sintering of colloidal silica nanoparticles onto

silica surfaces. Using this technique, surfaces covered with

various densities of spherical asperities with well-defined

sizes and height distribution can be prepared. To some

extent, such surfaces are reminiscent of the model surfaces

considered in the rough contact theory by Greenwood and

Williamson [18], in which spherical asperities with iden-

tical radius of curvature are assumed to be statistically

distributed along the vertical direction. Experimentally,

such patterned surfaces are of particular interest for rubber-

friction studies because they offer the possibility to intro-

duce roughness at a given length scale. Accordingly, the

frequency distribution associated with the deformation of

the rubber surface by the asperities is well controlled, as

well as the volume of the viscoelastic substrate that is

affected by hysteretic losses. This possibility is exploited

here for a quantitative investigation of the hysteretic con-

tributions to friction arising from localized viscoelastic

dissipation at the nano-asperity scale. In a first section, the

friction of such patterned silica surfaces against silicone

rubber is investigated as a function of particle density,

contact pressure and velocity. Using a previously devel-

oped contact-imaging methodology [19], the shear and

pressure distributions at the frictional interface are deter-

mined from a measurement of the displacement field at the

surface of the PDMS rubber. From these results, the pres-

sure dependence of the frictional shear stress is discussed.

In a second part, the experimental results are analyzed in

the light of a theoretical contact model, which allows the

role of viscoelastic losses associated with substrate defor-

mation by the nano-asperities to be evaluated.

2 Experimental and Numerical Details

2.1 Materials

A commercially available, transparent poly(dimethyl

siloxane) (PDMS) silicone (Sylgard 184, Dow Corning,

Midland, MI) was used as an elastomeric substrate. In order

to monitor contact-induced surface displacements, a square

network of small cylindrical holes (diameter 10 lm, depth

5 lm, and center-to-center spacing 400 lm) was produced

on the PDMS surface by means of conventional micro-

lithography techniques (see Ref. 19] for details). Under

transmitted-light observation conditions, this pattern appears

as a network of dark spots that are easily detected by means

of image processing. In order to prepare these marked PDMS

surfaces, a resin template with a network of cylindrical pil-

lars is first fabricated on a silicon wafer by means of soft

micro-lithography. The reactive silicone mixture in stoichi-

ometric proportions (10:1 by weight) is then directly molded

onto this template and cured in an oven at 70 �C for 48 h.

The specimen size is 6 cm 9 3 cm 9 1.5 cm. Before use,

PDMS specimens were thoroughly washed with isopropanol

and subsequently dried under vacuum.

Millimeter-sized contacts were achieved between the

PDMS substrate and plano-convex silica lenses (Melles

Griot, France) with a radius of curvature of 9.4 mm. The

r.m.s. roughness of the as-received lens is about 0.3 nm, as

measured from 1 9 1 lm2 AFM pictures. The silica lenses

were decorated with sintered silica nano-particles using a

previously developed procedure fully described in Refs. 16,

17]. The method relies upon the simple electrostatic

attraction of negatively charged silica nanoparticles onto

the silica lens surface, previously rendered positively

charged by coating with poly(ethylene imine). For that

purpose, the coated lens was immersed in an aqueous

silica nanoparticles suspension (diameter &73 nm,
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purchased from Microspheres-Nanospheres, Cold Spring,

NY). In order to achieve different particle densities, the

immersion time of the lens was varied between 10 and

30 min. After particle adsorption, the lenses were dried

with nitrogen and sintered at 1,080 �C for 2 h to remove

any polymer on the surface and to partially sinter the

nanoparticles to the surface. A smooth reference lens was

also prepared using the same procedure, but without any

nano-particles. This procedure ensured that the surface of

the smooth lens was in the same physical and chemical

state as that of the patterned surfaces. The patterned lenses

were characterized by atomic force microscopy (AFM) and

scanning electron microscopy (SEM). AFM images shown

in Fig. 1 indicate a uniform distribution of nanoparticles on

the lens surface with only a few aggregates. The average

density of the nanoparticles increases from 7.3 to 29.5

particles/lm2 when the adsorption time is changed from 10

to 30 min. In AFM measurements, the tip end radius can be

estimated to be of the order of magnitude of the nanopar-

ticles sizes. As a result, it is not possible to extract any

accurate information regarding the shape of the nanopar-

ticles, except their heights relative to the lens surface. The

measured average particle height above the substrate is

55 ± 10 nm. The average particle diameter (77 nm) was

obtained independently from SEM observations.

2.2 Friction and Displacement-Field Measurements

Friction experiments were carried out using a home-built

device, which is described in Ref. [20]. Experiments were

performed under imposed normal load (between 1.4 and 5.3

N) and velocity (between 0.01 and 1 mm s-1). The PDMS

substrate was displaced with respect to the fixed glass lens by

means of a linear translation stage. Lateral displacement and

force were continuously monitored with a non-contact laser

transducer (Keyence, France) and a strain gage transducer

(Entran, France), respectively. Images of the contact zone

were continuously recorded through the transparent PDMS

substrate by means of a zoom lens and a CMOS camera. This

system was configured to a frame size of 1,024 9 1,024

pixels with frame rates ranging from 0.3 to 30 Hz. The

measured friction forces were observed to vary slightly from

one PDMS specimen to another and also as a function of the

age of the specimen. As a consequence, all the experimental

data to be compared in this paper were obtained using a

single PDMS specimen and in a limited time.

The measurement of the surface lateral displacement field

was based on the detection of the markers at the surface of the

PDMS substrate by means of image processing. Image

accumulation under steady-state sliding allows a spatial res-

olution of about 20 lm to be achieved. Vertical displacements

within the contact zone were also deduced from a measure-

ment of the indentation depth of the lens and a knowledge of

its radius of curvature. The shear and contact-pressure distri-

bution within the contact were determined from the measured

displacement field with an already developed finite-element

(FE) inversion procedure, taking into account the material and

geometrical nonlinearities of the problem. For full details

regarding displacement field measurements and inversion

procedure, the reader is sent to Ref. [19].

3 Experimental Results

3.1 Friction Versus Asperity Density

Sintering nano-particles onto the silica lens systematically

leads to an increase in the observed friction force. At the

same time, the shape and area of the contact under steady-

Fig. 1 AFM contact images of silica lenses decorated with sintered nano-particles. Adsorption time: a 10 min and b 30 min. The corresponding

average particles densities are a 7.3 particles/lm2 and b 29.5 particles/lm2

Tribol Lett (2013) 49:135–144 137
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state sliding are also found to vary with the nano-particle

density. In order to allow for a comparison between the

various patterned surfaces, these changes in both the friction

force and in the contact geometry were accounted for by

considering the average frictional shear stress instead of the

friction force. Here, the average shear stress is defined as

s ¼ FT=A; where A is the measured macroscopic contact

area under steady-state sliding, and FT is the friction force.

Figure 2 shows the change in the measured average fric-

tional shear stress, s; as a function of the nano-particle den-

sity under imposed normal load and sliding velocity.

Patterning the silica surface results in a clear enhancement of

the shear stress: increasing the particle density up to 30

particles/lm2 results in a twofold increase in the frictional

shear stress as compared to the smooth contact. Moreover,

this increase with particle density is compatible with a linear

relationship, suggesting that nano-particles contribute to

friction independently of each other. The distribution of the

shear stress within the contact was further considered from

the inversion of the measured surface-displacement field.

Figure 3 shows a typical example of the shear and contact-

pressure distribution achieved under steady-state sliding. A

maximum in the contact pressure is clearly visible at the

center of the contact-reminiscent of a Hertzian distribution.

As indicated by the profile in Fig. 3b, the frictional shear

stress exhibits a gradient along along the sliding direction

which is uncorrelated to the pressure distribution. This gra-

dient has already been been reported for similar contacts [19]

and it will be the topic of a separate study. Within the

framework of the present study, it is without significance as it

does not alter the main conclusion that the shear-stress dis-

tribution within both smooth and rough contacts is inde-

pendent of the contact pressure. This feature is preserved for

both nano-particle densities. As shown in Fig. 4, this result is

further confirmed by a series of experiments where the nor-

mal load is varied from 1.4 to 5.3 N for a given particle

density (/ = 29.5 particles/lm2) without any change in the

local shear stress within experimental accuracy. When two

rough bodies are pressed together, contact is usually assumed

to occur at discrete, localized, contact spots. Within such

multi-contact interfaces, the level of local shear stress should

therefore vary as a function of the contact pressure by virtue

of the associated changes in the actual contact area. Here, the

fact that the local shear stress does not vary with the contact

pressure suggests that the contact between the smooth PDMS

substrate and the patterned silica surface is nearly saturated,

i.e., that the actual contact area does not significantly vary

within the considered pressure range.

3.2 Friction Versus Velocity

Figure 5 shows the changes in the average contact shear

stress as a function of the imposed sliding velocity for a

smooth and a patterned (/ = 6.7 particles/lm2) silica lens.

In the case of the smooth lens, a weak, nearly logarithmic,

velocity dependence is observed, as previously reported for

similar smooth glass/PDMS contacts [21]. It turns out that

the velocity dependence of the shear stress is slightly

enhanced in the case of the patterned lens. This is further

confirmed when the difference between the average shear

stress of the rough and smooth contacts is considered, as

shown by black squares in Fig. 5. A potential explanation for

this effect would be that some additional viscoelastic dissi-

pation is induced on the scale of the sliding nano-asperities,

as a result of localized surface deformation of the PDMS

rubber. Accordingly, the PDMS surface would be strained by

the nano-particles at a characteristic frequency of the order of

v/d, where v is the sliding velocity, and d is the particle

diameter. Depending on the sliding velocity, strain fre-

quencies in the range 102–104 Hz can be thus achieved

locally on the PDMS surface in the sub-micrometer range.

Although the selected PDMS is not a highly viscoelastic

rubber, a significant increase in the shear loss modulus (G00)
is measured by DMTA over such a frequency range (see

Appendix). Nano-asperity-scale viscoelastic contributions

to friction could therefore—at least partially—account for

the observed increase in the shear stress when nano-particles

are present on the silica lens. This hypothesis is further

considered in the following section.

4 Rough-Contact Model

The above results indicate that frictional shear stress is

significantly enhanced by the presence of nano-particles on

the surface of the silica lens. Moreover, this increase is

compatible with a linear dependence on the particle
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Fig. 2 Average frictional shear stress as a function of the nano-

particle density (sliding velocity v = 1 mm s-1, imposed normal

force FN = 1.4 N)
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density, suggesting that the contributions of nano-particles

to friction are additive. In the following section, we will

discuss these results within the framework of the classical

Bowden and Tabor ‘two term’ model [22, 23]. Accord-

ingly, the frictional force is assumed to arise from two

independent contributions, denoted as the adhesive and the

ploughing terms. The so-called adhesive term encompasses

all the dissipative mechanisms occurring at the points of

intimate contact between the solids, i.e., on length scales

lower than the asperity size. The ploughing term corre-

sponds to the force required to displace the rubber material

from the front of the rigid nano-asperities. Here, it repre-

sents the contribution of the viscoelastic losses involved in

the deformation of the rubber substrate by the nano-

asperities. Rewritten in terms of shear stress, this model

can be expressed as follows

s ¼ sa þ sv; ð1Þ

where sa is the adhesive term, and sv is the viscoelastic

(ploughing) term corresponding to deformation at the nano-

asperity scale. In a first approach, the viscoelastic

component, sv, can be evaluated by a simple scaling

approach, in which the viscoelastic dissipation is assumed

to occur within a volume of the order of a3, where a is the

radius of the contact formed between the rubber substrate

and a nano-asperity. The energy, U dissipated during the

deformation of a single asperity contact can thus be written as

U � E00�2a3; ð2Þ

where e is the average contact strain and E
00

is the loss

component of the complex Young’s viscoelastic modulus

at some characteristic frequency of the order of v/a, where
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Fig. 3 Contact-stress distribution at the surface of a PDMS substrate

sliding against a patterned silica lens (particle density / = 29.5

particles/lm2, v = 1 mm s-1, FN = 1.4 N). a Shear stress (left)
and contact pressure (right) fields deduced from the inversion of the

measured displacements. The PDMS substrate is displaced from

bottom to top with respect to the fixed glass lens as indicated by the

arrow. b Shear stress (red line) and contact pressure (blue line)

profiles taken along the sliding direction and across the contact. The

PDMS substrate is displaced from the right to the left as indicated by

the arrow (Color figure online)
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v is the sliding velocity. Taking � � a=R; where R is the

radius of the nano-asperity it comes

U � E00
a5

R2
: ð3Þ

The energy U is dissipated when the asperity travels over a

distance of the order of the contact size. The corresponding

force can thus be written as

fv �
dU

da
¼ E00

a4

R2
: ð4Þ

Within the assumption of non-interacting asperities, the

total viscoelastic shear stress can thus be expressed as

follows

sv � /E00
a4

R2
; ð5Þ

where / is the number of asperities per unit surface area.

Accordingly, the viscoelastic component of the frictional

shear stress should be proportional to the particle density and

to the loss modulus of the rubber substrate at the

characteristic strain frequency imposed by the spherical

asperities. The pressure dependence of the shear stress is

embedded in the term a4/R2, which describes the local

contact conditions on the asperity scale. More refined

simulations of the viscoelastic component of the frictional

shear stress using the same ideas were carried out using a

numerical model that solves the normal-contact problem

between a rigid rough surface and a smooth linear

viscoelastic substrate. In this approach, the friction force is

assumed to arise only from the viscoelastic dissipation

resulting from the deformation of the substrate under the

action of the contact pressure. Then, the corresponding

frictional shear stress can be derived explicitly as a function

of the displacements in Fourier space. In addition,

displacements can be related to the applied contact

pressure from the expression of the Green’s tensor [24] in

Fourier space [11, 12, 25] which simplifies to the following

expression in the case of an incompressible substrate

~uz ¼ ~Gz ~p: ð6Þ

Here ~u and ~p denote the Fourier transforms of the vertical

surface displacement and contact pressure, respectively. ~Gz

corresponds to the Fourier transform of the Green’s tensor

component along the vertical direction. The main issue

remains the estimation of the displacement field, which is

in general unknown unless an intimate contact is achieved

between the surfaces. In order to determine the vertical

displacement field, we used a numerical method to solve

the viscoelastic normal-contact problem. The algorithm

was initially proposed by Polonski and Keer [26] and

further detailed in Ref. [27]. The conjugate gradient is used

and the calculation of the displacement is operated in

Fourier space. The calculation of the friction force is per-

formed as described in Ref. [11]. The problem is also

written for steady-state conditions [28, 29] and periodic

boundary conditions are introduced. The advantage of this

method is to provide an exact spectral description of the

deformed surface, from which viscoelastic dissipation can

be estimated. In addition, this contact model is also able to

handle potential effects arising from elastic coupling

between neighboring asperities. In order to account for

viscoelasticity, the elastic Young’s modulus of the
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substrate is replaced by the complex viscoelastic modulus

in the expression of the Green’s tensor component. In a

spirit similar to that of Persson’s model [14], this contact

model is thus based on a spectral description of the sur-

faces, which can theoretically incorporate the entire fre-

quency spectrum involved in the deformation of the

viscoelastic substrate.

Two-dimensional calculations are carried out using a flat

surface covered with a random distribution of identical

asperities with hemispherical (R = 38.5 nm) caps and a

height of 55 nm as determined experimentally. The vis-

coelastic properties of the PDMS rubber are described

using a generalized Maxwell model whose parameters are

fitted to the experimental data (see Appendix). It can be

noted in passing that, in the experiments, the selected

specimen size ensures that semi-infinite contact conditions

are achieved during sliding experiments (i.e., the ratio of

the substrate thickness to the contact radius is greater than

ten [30]) in accordance with the theoretical contact model.

As a validation of the model, we first present some

results corresponding to a suspended-state contact situa-

tion, in which contact only occurs at the top of the spherical

capped asperities. From the results shown in Fig. 6a, the

relationship between the viscoelastic shear stress and

contact pressure is seen to obey a power law dependence.

The same conclusion holds for the dependence of the shear

stress on the particles density (Fig. 6b). Power-law fits of

these numerical data provide sv � p1.43 /-0.4. These results

can be compared to the theoretical prediction of Eq. (5).

Indeed, if a Hertzian contact is assumed to occur between

the deformable substrate and the rigid asperities, Eq. (5)

can be rewritten as

sv � E00R�2=3 p

E0

� �4=3

/�1=3; ð7Þ

where E0 is the storage component of the viscoelastic

modulus at the characteristic loading frequency. Accord-

ingly, s � p1.33 /-0.33, which is very close to the prediction

of numerical simulations. In the following section, we will

consider a more complex situation, in which contact occurs

between the rubber substrate and both the asperities and the

base plane of the rough surface. This situation is likely to

correspond to the experimental results which will be

compared to the theoretical prediction.

5 Comparison to Experimental Data and Discussion

In order to extract the viscoelastic component, sv, from the

measured shear stress, we assimilate the adhesive compo-

nent sa into the frictional shear stress measured with the

smooth lens. This assumption implies that the enhancement

of sa that arises from the increased area of intimate contact

in the presence of nano-asperities is neglected. This

hypothesis is justified by a simple calculation, which shows

that for the highest asperity density (30 particles/lm2), the

maximum increase in the actual (intimate) contact area

would be only 15 %, while the shear stress is increased by

a factor of about two, compared to that on the smooth lens.

Figure 7 shows the calculated and experimental visco-

elastic shear stress as a function of particle density. For all

these calculations, partial (unsaturated) contact conditions

were found to occur between the rubber substrate and the

rough surface with the rubber touching both the top of the

asperities and some parts of the flat base plane. The linear

relationship between sv and particle density is retrieved by
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Fig. 6 Calculated viscoelastic shear stress for a contact in the

suspended state (v = 1 mm s-1). a Shear stress as a function of

contact pressure. Filled circle / = 10 lm-2, open circle /
= 30 lm-2, filled square / = 60 lm-2. Inset box contact map

(3lm 9 3lm) showing contact points as black dots. The black lines
correspond to power-law fits with an exponent 1.43. b Shear stress as

a function of particle density. The black line corresponds to a power-

law fit with an exponent -0.4
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the numerical simulations, but with a slope that is about

three times higher than in the experimental case. However,

this semi-quantitative agreement between experimental and

simulated data is reasonable, if one considers all the

uncertainties associated with the model parameters (such as

particle shape and determination of the viscoelastic

behaviour law). In particular, it is interesting to consider

the fluctuations in the calculated viscoelastic shear stress

that are induced by changes in the height of the particles

above the flat surface. Results reported in Fig. 8 show that

the level of viscoelastic dissipation is very sensitive to this

parameter: a 15 nm increase in the asperity height above

the surface can result in a twofold increase in the visco-

elastic shear stress.

It is also interesting to compare the numerical prediction

of Fig. 7 to a simple calculation using Eq. (5) in the lim-

iting case of an intimate contact between the rubber surface

and hemispherical asperities. When a & R, this expression

reduces to

sv � /G00R2: ð8Þ

Accordingly, the slope of the s(/) relationship can be

calculated from the radius of curvature of the nano-asper-

ities and from the measured value of G‘‘ at the character-

istic frequency defined by v/R. For v = 1 mm s-1 and

R = 38.5 nm, the obtained value (ds/d/ & 4 9 10-9 N) is

about one order of magnitude lower than the value of the

numerical simulations (ds/d/ & 5 9 10-8 N). This dis-

crepancy between the two calculations puts in question the

relevance of the average frequency, v/a, to describe the

viscoelastic response of the substrate at asperity scale.

Depending on the shape of the asperity and on the contact

condition, the strain frequency can in fact be distributed

over a wide spectrum. This point becomes evident if the

limiting case of hemispherical caps in intimate contact with

the viscoelastic substrate is considered. In such a situation,

infinite strain frequencies will be achieved at the periphery

of the contact, while the frequency will vanish at the center

of the contact. Such effects are also evidenced in more

realistic numerical simulations, in which the ratio of the

height, h, of the asperity to their radius of curvature, R, is

varied at a constant asperity diameter (Fig. 9). A strong

increase in the calculated viscoelastic shear stress is

observed when h=R! 1; i.e., when the tangent to the

surface of the asperity becomes close to a vertical at the

periphery of the asperity contact.
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6 Conclusion

In this paper, we have investigated the frictional properties

of a smooth rubber substrate sliding on a rigid surface

covered with mono-disperse colloidal asperities. Such

‘model’ rough surfaces with well-controlled asperity shape

and size offer the possibility to revisit, in simplified contact

situations, the current theoretical description of rubber

friction with rough surfaces. Here, the emphasis was put on

the so-called hysteretic component to friction that arises

from the localized viscoelastic deformation of the rubber

surface by the rigid asperities. We have found that the

observed increase in the shear stress in the presence of

colloidal asperities can be accounted for semi-quantita-

tively by a viscoelastic contact model that is based on a

spectral description of the rough surfaces. However, it turns

out that the calculated shear stress is highly sensitive to the

geometrical details of the rigid asperities. In particular, the

high-frequency strain components corresponding to ele-

vated asperity slopes seem to make a dominant contribu-

tion to hysteretic friction. As consequence of the

uncertainties regarding the actual asperity shape and height

distribution, as well as the viscoelastic properties of the

rubber, it seems unrealistic to expect better than an order-

of-magnitude estimate of the shear stress, even for such

simplified model surfaces. More generally, these results

highlight the problem of the accuracy of the current theo-

retical predictions of hysteretic friction in the much more

complex case of statistically rough surfaces. It is likely that

the associated spectral description of the surfaces does not

allow for the level of accuracy required to yield more than

order-of-magnitude estimates of the hysteretic friction

force. In addition, our contact model, as others, is based on

a linear viscoelastic description of the rubber behavior. The

contribution of the finite strains that are likely to be

achieved within the contact remains to be evaluated.
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Appendix: Viscoelastic Properties of PDMS

The linear viscoelastic properties of the PDMS rubber were

determined using Dynamical Mechanical Thermal Analysis

(DMTA). PDMS disks (2 mm in thickness and 8 mm in

diameter) are sheared at low strain (between 0.02 and 0.05 %

depending on the temperature) between the parallel plates of

a rheometer (Anton Paar, MCR 501). Isothermal steps with

3 �C increments have been carried out between -77 and

23 �C. At each isothermal step, the shear modulus is mea-

sured during a frequency sweep between 0.01 and 50 Hz

after thermal equilibration of the specimen during 10 min-

utes. Figure 10 shows the resulting master curve at a refer-

ence temperature of 21 �C. The solid lines correspond to the

generalized Maxwell model fitted to the experimental data.
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