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Fracture...

Marcel Duchamp, the Large Glass

(Philadelphia) Kendell Geers, Stripped Bare (exhibi-

tion in Tours, 2012)
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Main notions I

cohesion energy, 6
cohesive stress, 10, 29
cohesive zone, 29
composite, 56
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crack tip, 16
Digital Image Correlation, 23
effective toughness, 52
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energy release rate, 36
fracture, 14
plastic dissipation, 52
practical strength, 12
size effect, 32
slit crack, 17
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Main notions II

stress intensity factor, 18
surface flaw, 42
theoretical strength, 11
thin film, 47, 54
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Interaction energy as a function of surface separation

• interaction
potential
V (z)

• Surface stress
σ(z) = −dV

dz
• cohesion energy

Γ0

Lawn and Wilshaw (1975)

6 / 60



Theor. strength Stresses conc. Energy flow Dissipation Conclusion References

Normalized interaction potential

• V (z) = Γ0Ṽ (z̃)
• z̃ = z−z0

∆ where
• ∆ is defined by

Γ0 = ∆2 d2V
dz2

∣∣∣
z0

Ferrante et al. (1983)
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Can we measure the interaction directly ?

1. Surface forces
measurements
with fine tips
allow for direct
measurement of
local inter-surface
interactions

2. note long range
contribution

Tip/surface interaction.Lantz et al. (2001)
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Elastic modulus

Normalized interaction energy as a

function of normalized surface sepa-

ration

• near z0, σ(z) =

− d2V
dz2

∣∣∣
z0

(z − z0) = E z−z0
z0

• the elastic modulus is
E = −z0

d2V
dz2

∣∣∣
z0

= z0
∆2 Γ0

After Ferrante et al. (1983)
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Cohesive stress

Surface stress as a function of surface separation

• the cohesive
stress σcoh is the
stress maximum

• σcoh = Γ0
δ where

δ = 3 to 8∆

σcoh ' E/8 to E/3

After Ferrante et al. (1983)
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Theoretical strength vs.. . .

Evaluation of the order of magnitude of the cohesive strength (also
called theoretical strength)

Order of magnitudes

Γ0 ' 1 Jm−2

∆ ' 0.2 nm

E ' 100 GPa

σcoh ' 30 GPa

which is 106 N or

100 tons on 1×1 cm2 !!!
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. . . practical strength !

The recommended loading for architectural
glass products are in the range of 10s of
MPa...
It is somewhat better but still quite limited
for other materials such as metals.

How do I get from the practical strength to the stress level
needed for material rupture ?
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”Antiplane” elasticity
100 % pure shear – same quality, lower price...

Elastic fields and equilibrium

• deformation and stress

ε̄ = ∇u(x , y)

σ̄ = µε̄

• equilibrium

div(σ̄) = 2µ4(u)

∆u = 0

Deformation for antiplane

elasticity

One (scalar) field, one single elastic constant.
cf electrostatics, liquid flow...
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Fracture – boundary conditions

A fracture is a free surface with a boundary.

Boundary conditions
• stress

σy = 0 for θ = ±π

• u is discontinuous on the fracture faces

Fracture geometry in

mode III
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The fracture problem - around the crack tip

The displacement field The stress field
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Crack tip stress field

Expansion around the crack tip

σ = ... + A−mz
−m− 1

2 + ...

+ Kz−
1
2

+ A0 + ...+ Amz
m+ 1

2 + ...

The area of K dominance.

Williams expansion – Williams (1959)
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A perfect 2D crack with far field

stresses τ∞ – the slit crack

τ(x , 0+) =
τ∞x√
x2 − a2

x√
x2 − a2

=

√
a
√

2

1
√
x − a

+

3

4
√

2
√
a

√
x − a +

5

32
√

2a3/2
(x − a)3/2 + · · ·

Stress field distribution τ

For a ”perfect” crack, the most
singular term is the σ ∝ 1√

r
term.
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A connection between far field and crack tip stress field

The stress intensity factor K is defined by

σ(r) ' K√
2πr

For our 2D case

τ(r , θ) ' τ∞
√

a

2

1√
r

(− sin
θ

2
, cos

θ

2
)

so that

K =
1√
π
τ∞
√
a

Stress distribution around the crack

tip.

Note: the angular dependance shown here is specific to this special case.
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Crack tip – 2D elasticity

displacement field

u(r , θ) =
K

µ

√
2r

π
sin

θ

2

Displacement distribution around the

crack tip.
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Seeing the K field

A typical photoelastic stress field around a crack

tip.

With the correct angular dependance for a real, mode I crack.
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Measured crack tip stress field. After Cook 2008
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Where is the crack ?

Two successive images of a propagating crack – SiC.

Roux Hild IJF 140 (2006) 141
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Galerkin approach to Digital Image Correlation

Q4 elements1 px = 1.85 µm
XQ4 (extended) elements, with a dis-

continuity field – 1 px = 1.85 µm

Φ2(ai ) =
∫ ∫

(g(x̄)− f (x̄ + ū)) dx̄ with ū(x̄) = aiφi (x̄)
Roux Hild IJF 140 (2006) 141
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Extended integrated elements

XQ4 (extended) elements, with a dis-

continuity field – 1 px = 1.85 µm
XIQ4 (extended and integrated) with

a Williams expansion

similar to
ū = ...+ A−mz

−m+ 1
2 + ...+ Kz

1
2 + A0z + ...+ Amz

m+ 3
2 + ...

Roux Hild IJF 140 (2006) 141
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What are the supersingular fields useful for ? (-1)

Crack dipole

Shift as a function of position

Roux Hild IJF 140 (2006) 141
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What are the supersingular fields useful for ? (-2)

Crack quadrupole

Plastic zone size

Roux Hild IJF 140 (2006) 141
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If the stress distribution is singular, what
happens when it goes to infinity ?
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A perfect 2D crack with far field stresses τ∞
elastic shear modulus: µ

u(x , 0+) =
τ∞
µ

√
x2 − a2
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The lower lengthscale problem

With crack face
interaction:

• cohesive zone
size ε = a− c

• cohesive stress
τ0

Cohesive zone

Cohesive stress and singularity regularization

Barenblat-Dugdale model (Maugis (2000))
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Regularization of the stress singularity

Cohesive stress and singularity regu-

larization

τ(x, 0+) = − 2
π
τ0 arctan

(
c

√
x2−a2

x

√
a2−c2

)

Barenblat-Dugdale model (Maugis (2000))
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Regularization of the stress singularity

Far field and Williams expansion

τ∞
τ0
'
√

2ε

a
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Downscaling

impact of cohesive zone size on far field

stress ratio

Far field stresses converge to cohesive stresses as size shrinks (size
effect) – far field is not so far...! 32 / 60
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Example – Bone toughness

Stress distribution

Biomaterial structures

Gao et al. (2003)
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Adhesive contact

Animal pad division

Various pads as a function of species.

Size Effect

Pad division as a function of weight.

Arzt et al. (2003)
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The lower lengthscale problem

Animal pad division

Cohesive zone.

Average stress

Cut-off with size reduction.

Arzt et al. (2003)
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Energy balance

During crack propagation

energy release rate

G ≡ dEel
dA

∣∣∣∣
δ

At equilibrium

G = Γ0

A crack with some remote loading.
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Example – a crack in a thin plate

Energy balance

G = h
σ2

2E

• elastic modulus E

• depth b
A crack traveling through a plate.
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Energy release rate – the general case

Full 3D fracture

Energy release rate:

G = ψ
σ2a

E

where ψ is a numerical constant
of the order of 1

A 3D crack – half-penny.

σ '
√

Ew

a

Griffith (1921)
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Crack tip energy flux

G = −
∫
S

dū

dl
· ¯̄σ · n̄

From pages 18 and 19 we have

• τ ∝ rn−
1
2 , n ≥ 0

• u ∝ rn+ 1
2

The only non vanishing term as
r → 0 is n = 0 (the K term) and

G =
πK 2

4µ

The energy carrying field is the singular term.
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Energy release rate – crack closure method

dUel =
b

2

∫ da

0
σ [u(π)− u(−π)] dr

=
bK 2

2µ

∫ da

0

√
da− r

r
dr

G =
πK 2

4µ
Crack tip fields

with r = da sin2 α and G = dUel
dA = dUel

bda
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Energy release rate – cohesive model

From the cohesive stresses
• steady state

dE
da

= −
∫ ∞
a

σ(z)
dz

dx
dx

• change of variable (cf p. 6)
dE
da

= −
∫ ∞

0
σ(z)dz = Γ0

Schematics of the cohe-

sive zone

Contribution from the cohesive stresses
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Size effects in rupture

Glass

Tensile strength – Griffith’s data.

rupture is determined by the surface flaw size – Griffith (1921)
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Impact of controlled flaw size

silica rupture

Strength as a function of flaw size - silica

Semjonov and Kurkjian (2001)
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Semi-brittle materials

Failure distribution as a function of size of Si

beams.

Namazu et al. (2000)
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Ultimate tensile strain

Rupture strain distribution for glass and silica

fibers.

Brow et al. (2005)
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Strength vs. yield stress map

Strength distribution as a function of ”elastic

limit” for various materials.

Telford, Materials Today, March 2004.
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Substrate constraint on thin film cracking

Energy release rate

a) G = ψ0
σ2a

E

b) G = ψ1
σ2h

E

Substrate constraint on thin films.

Cook and Suo (2002)
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Impact of substrate constraint – compliant interlayer

Cross section (left) and crack velocity (right)

Tsui et al. (2005)
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Crack branching – the Cook Gordon mechanism

σ =

√
E ?Γ0coh

πh
and σ =

√
4EΓ0int

h
(1)

Branching criterion for coating fracture.

Interface delamination

Γ0coh > 4πΓ0int
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Pulling out a punch on a film

F = πa2E

(
d

h

)
E = πa2h × 1

2
E

(
d

h

)2

G =
∂E
∂πa2

= Γ0
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Rupture

• displacement:

Γ0 =
Ed2

2h

• mean stress

σ =

√
2EΓ0

h
(2)

The glue salesman paradox (Kendall (2001))

The less glue the more it sticks (ie the larger the pull-out force)

51 / 60



Theor. strength Stresses conc. Energy flow Dissipation Conclusion References

Rupture and macroscopic
plasticity

• plastic dissipation
contributes to the (steady
state) effective toughness
Γss

• extends over radius Rss

• yield stress:

σy '
√

ΓssE

Rss
(3)

Two models for plastic dissipation

Wei and Hutchinson (1999)

52 / 60



Theor. strength Stresses conc. Energy flow Dissipation Conclusion References

Plastic process zone

Toughness as a function of peak stress.

Wei and Hutchinson (1999)
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Plastic dissipation in thin film delamination

Toughness as a function of confinement

Three regimes of confinement.

Hsia et al. (1994)
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• Cu film
• Mao model based

on Hsia et al.
(1994)

• Present model
based on:

σy = σy0

(
1 +

β√
h

)

Contribution of plastic dissipation

Interfacial toughness as a function of film thick-

ness

Volinsky et al. (2002)
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Rp =

(
K

σy

)2
Composite toughness

Toughness of a composite as a function of ma-

trix toughness

Bradley (1991)
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Size and strength – one example

Richter et al. (2009)
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Tensile strength of Cu whiskers

Brenner (1956)
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Griffith (1921)

59 / 60



Theor. strength Stresses conc. Energy flow Dissipation Conclusion References

Conclusion

Rupture

Beyond the physical rupture mechanisms at the interface

• intrinsically spans lengthscales

• intrinsically spans stress ranges

• involves specific material response
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