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Rigid surfaces – the Orowan estimate

Assume loading on surfaces

σ(z) = E
z

∆

Vel(z)/A = E
z2

2∆
=
σ2∆

2E

Rupture occurs when σ(zrupt) ≡ σtheo is
such that Vel ' w

σtheo '
√

2Ew

∆
(1) Figure: Interaction

energy as a function of
surface separation

After Lawn 1975 [1]



Theoretical strength

For order of magnitudes:

w ' 1 Jm−2

∆ ' 0.2 nm

E ' 100 GPa

σtheo ' 30 GPa

or 100 tons = 106 N on 1×1 cm2 !!!



Does it conform to our experience ?

1. gravity against surface forces

2. balance gives surface win if

R2 < w/ρg

3. Cut-off radius around 1 mm !!!

Figure: A typical MEMS

There is something more to it...roughness



What if remote loading ?

MD simulations of silica rupture

Figure: Structure Figure: Stress

From Pedone 2008 [2]



Assuming remote loading...

• the stress is homogeneous through the macroscopic body

• predicts simultaneous rupture of the full volume when

σtheo '
√

2Ew

∆

Problem

1. Rupture does not (usually) happen that way → localized

2. We need to examine the loading and the stress distribution
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Similar estimates for theoretical shear strength

• voir les cours de Benoit Devincre et Marc Legros



Can we measure the theoretical tensile strength directly ?

1. Surface forces
measurements
with fine tips
allow for direct
measurement of
local inter-surface
interactions

2. note long range
contribution

Figure: Tip/surface interaction.

After Lanz 2001 [3]



More sophisticated...

With long range cohesive forces

σ(z) = Az for z � ∆

σ(z) = Cz−3 for z � ∆

Rupture occurs when σ(zrupt) ≡ σtheo is of
the order

σcrit ' (A1/3C )1/4

Ref. Kohn 1979 [4]
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Fracture: the energy release rate

Bottom line
• A very unstable geometry :

fracture

• How much energy is
available ? = stability
criterion for the fracture

Figure: A crack with some remote
loading.



Energy Release Rate – Peeling

• Energy balance:

−F da = −w b da

• Energy release rate:

G = F/b = w

Figure: Peeling at 90◦.

• No elastic deformation energy

• simplest example ever



Energy release rate – Calculation
A bit of technique

Method

• equilibrium solution including co/ad-hesive energy

• from potential energy minimization



Potential Energy Minimization
A 1-element model
• from potential energy minimization

• a simple example

E =
k

2
(u − u0)2 − uF

dE = k(u − u0)du − duF

Figure: A simple spring
system under tension.

Equilibrium

The equilibrium value of u obeys dE = 0 for all du or

F = k(u − u0)
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Energy release rate – Energy balance

• from potential energy minimization

• fracture: general case

E = Eel −
{∫

surf
uσdS

}
dE = 0

Figure: Schematics of the
cohesive zone

Contribution from the cohesive stresses

d

{∫
surf

uσdS

}
=

∫ ∞
0

σcoh(z)dzdA = wdA
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Bottom line
• Energy release rate –

working definition

G ≡ dEel
dA

∣∣∣∣
δ

or

G ≡ d(Eel − F δ)

dA

∣∣∣∣
F

• At equilibrium

G = w

Figure: A crack with some remote
loading.



A non-trivial example – the Double
Cantilever Beam

F = αδ with α =
Eb

4

(
h

L

)3

Eel(δ,A) =
1

2
αδ2

Figure: DCB.

Energy release rate

G =
3Eh3

8
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• fixed grip is
isochoric

• fixed load is
isobaric

Energy landscape – Stability

Figure: DCB at fixed grip (top) and fixed load
(bottom).

cf Maugis 2000 [5]



double cantilever beam – Application
thin film adhesion

• glass substrate
and backing

• multilayers
deposited on the
substrate

Interface toughness measurements

Figure: Application of DCB test for thin film
adhesion measurements.

After Barthel 2005 [6]



Crack branching – the Cook Gordon mechanism

σ =

√
E ?wcoh

πh
and σ =

√
4Ewint

h
(2)

Figure: Branching criterion for coating fracture.

Interface delamination

wcoh > 4πwint
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Energy release rate – the general case

Full 3D fracture

Energy release rate:

G = ψ
σ2a

E

where ψ is a numerical constant
of the order of 1

Figure: A 3D crack – half-penny.

Remote loading at rupture

σ '
√

Ew

a
(3)
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Size effects in rupture

Glass

Figure: Tensile strength – Griffith’s data.

After Griffith 1921 [7]



Figure: Strength distribution as a function of
”elastic limit” for various materials.

After Telford, Materials Today, March 2004.



Ultimate tensile strain

Figure: Rupture strain distribution for glass and
silica fibers.

After Brow 2005 [8]



Glass fibers

Figure: Failure strength as a function of defect
size and nature.

After Lin 1996 [9]



Semi-brittle materials

Figure: Failure distribution as a function of size
of Si beam.

After Namazu 2000 [10]
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Pulling out a punch on a film

F = πa2E

(
d

h

)
E = πa2h × 1

2
E

(
d

h

)2

G =
∂E
∂πa2

= w



Rupture

• displacement:

w =
Ed2

2h

• mean stress

σ =

√
2Ew

h
(4)

Figure: Punch on a thin film

The glue salesman paradox (Kendall 2001 [11])

The less glue the more it sticks (ie the larger the pull-out force)

1

1The energy at rupture
∫

Fdd = w but is difficult to measure (instrument
stiffness)



Experimental results

1. Pull out test on
cylindrical dies

2. Variable glue joint
thickness

The Merril Meissner data

Figure: Pull out force

After Kendall 2001 [11]



Substrate constraint on film cracking

Energy release rate

a) G = ψ0
σ2a

E

b) G = ψ1
σ2h

E

Figure: Substrate constraint on thin films.

After Cook 2002 [12]



Impact of substrate constraint – compliant interlayer

Figure: Cross section (left) and crack velocity (right)

After Tsui 2005 [13]
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Antiplane elasticity
Same quality, lower price...

Elastic fields and equilibrium

• deformation and stress

ε̄ = ∇u(x , y)

σ̄ = µε̄

• equilibrium

div(σ̄) = 2µ4(u)

∆u = 0

Figure: Deformation for
antiplane elasticity



Boundary conditions

Boundary conditions
• stress

σy = 0 for θ = ±π

• u is discontinuous on the fracture faces

Figure: Fracture
geometry in mode III



u = Im(Ω) with Ω = Az1/2

Figure: The stress distribution
around the crack tip.

σx = −Aµ/2r−
1
2 sin(θ/2)

σy = Aµ/2r−
1
2 cos(θ/2)

Crack tip stress field

Figure: The stress distribution
around the crack tip.



Figure: Measured crack tip stress field. After Cook 2008



Connexion to the macroscopic lengthscale

With K = Aµ

G =
π

2

K 2

2µ

A slit crack

Figure: Stress field distribution σy



The lower lengthscale problem

σcoh '
√

Ew

ε
(5)

Cohesive zone

Figure: Cohesive stress and singularity
regularization / Barenblat-Dugdale model



The lower lengthscale problem

Animal pad division

Figure: Various pads as a function
of species.

Size Effect

Figure: Pad division as a function of
weight.

After Arzt 2003 [14]



The lower lengthscale problem

Animal pad division

Figure: Cohesive zone.

Average stress

Figure: Cut-off with size reduction.

After Arzt 2003 [14]
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Rupture and macroscopic
plasticity

• plastic dissipation
contributes to the (steady
state) effective toughness
Γss

• extends over radius Rss

• yield stress:

σy '
√

ΓssE

Rss
(6)

Figure: Two models for plastic
dissipation

After Wei 1999 [15] voir cours de Samuel Forrest



Plastic process zone

Figure: Toughness as a function of peak stress.

From Wei 1999 [15]



Toughness as a function of confinement

Figure: Three regimes of confinement.

From Hsia 1994 [16]



• Cu film

• Mao model based
on [16]

• Present model
based on:

σy = σy0

(
1 +

β√
h

)

Contribution of plastic dissipation

Figure: Interfacial toughness as a function of
film thickness

From Volinsky 2002 [17]



Size and strength – from Richter 2009 [18]



Tensile strength of Cu whiskers

From Brenner 1956 [19]



From Griffith 1921 [7]



Conclusion

Rupture

Beyond the physical rupture mechanisms at the interface

• intrinsically spans lengthscales

• intrinsically spans stress ranges

• involves specific material response
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